首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3465篇
  免费   312篇
  国内免费   686篇
化学   2837篇
晶体学   130篇
力学   122篇
综合类   13篇
数学   53篇
物理学   1308篇
  2024年   2篇
  2023年   160篇
  2022年   90篇
  2021年   106篇
  2020年   191篇
  2019年   120篇
  2018年   128篇
  2017年   156篇
  2016年   211篇
  2015年   219篇
  2014年   254篇
  2013年   337篇
  2012年   306篇
  2011年   234篇
  2010年   253篇
  2009年   261篇
  2008年   165篇
  2007年   298篇
  2006年   237篇
  2005年   132篇
  2004年   108篇
  2003年   110篇
  2002年   88篇
  2001年   109篇
  2000年   48篇
  1999年   82篇
  1998年   36篇
  1997年   3篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有4463条查询结果,搜索用时 46 毫秒
61.
The standard enthalpies of formation of selected ternary half-Heusler type compositions XYZ (X = Au, Co, Fe, Ir, Ni, Pd, Pt, Rh, Ru; Y = Hf, Mn, Ti, Zr; Z = Ga, Sn) were measured using high temperature direct reaction calorimetry. The measured standard enthalpies of formation (in kJ/mole of atoms) of the half-Heusler compounds (prototype MgAgAs, Pearson symbol cF12, space group F-43m) are, IrMnSn (−29.4 ± 1.8); NiTiSn (−52.6 ± 2.4); PtHfSn (−98.8 ± 3.4); PtMnSn (−55.8 ± 2.6); PtTiSn (−93.6 ± 3.3); PtZrSn (−104.9 ± 3.8); for the B2 compound (prototype CsCl, Pearson symbol cP2, space group Pm-3m), RuMnGa (−26.9 ± 1.7); for the C1 structured (prototype CaF2, Pearson symbol cF12, space group Pm-3m) or the C1b structured compound IrMnGa (−40.9 ± 1.7). Indicative standard enthalpies of formation of the following compounds were obtained, half-Heusler compounds AuMnSn, CoTiSn, IrZrSn, NiHfSn, NiZrSn, PdHfSn, PdZrSn, RhTiSn; Heusler compound (prototype Cu2MnAl, Pearson symbol cF16, space group Fm-3m) RhMnSn; hexagonal compound (prototype BeZrSi, Pearson symbol hP6, space group P63/mmc) PtMnGa and another type of hexagonal compound (prototype RhHfSn, Pearson symbol hP18, space group P-62c) RhHfSn, IrZrsn, RhZrSn. Values were compared with ab initio calculations from AFLOW and OQMD. Lattice parameters of these compounds were determined using X-ray diffraction (XRD) analysis. Microstructures were characterized using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Selected alloys were further annealed to investigate phase transformations and phase relationships.  相似文献   
62.
The effect of Alkanolamide (ALK) loading on properties on three different types of carbon black (CB)-filled rubbers (SMR-L, ENR-25, and SBR) was investigated. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK gave cure enhancement, better filler dispersion and greater rubber–filler interaction. ALK also enhanced modulus, hardness, resilience and tensile strength, especially up to 5.0 phr of loading in SMR-L and SBR compounds, and at 1.0 phr in ENR-25 compound. Scanning electron microscopy (SEM) proved that each optimum ALK loading exhibited the greatest matrix tearing line and surface roughness due to better rubber - filler interaction.  相似文献   
63.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   
64.
In this paper, species versus temperature profiles were measured during the oxidation of 1,3-butadiene in a jet-stirred reactor (JSR) at 1 atm, at different equivalence ratios (φ = 0.5, 1.0 and 2.0), in the temperature range 600 – 1020 K. Both synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) and gas chromatography (GC) methods were used to analyze the species. The experimental results show that a large proportion of the products are aldehydes (formaldehyde, acetaldehyde, acrolein, etc.) and ketenes (ketene, methyl-ketene), with acrolein being one of the major products. Moreover, furan, 1,3-cyclopentadiene and benzene are also present as intermediates in significant amounts. The reaction pathways leading to the formation of these species are discussed in detail. A new detailed mechanism, NUIGMech1.3, was developed to simulate these new data as well as other experimental data available in the literature. The validation results indicate that quantum calculations are also needed to explore the formation of some important species formed in the oxidation of 1,3-butadiene. Overall, the new 1,3-butadiene mechanism agrees well with various experimental data in the low- to high-temperature regimes and at different pressures. Flux and sensitivity analyses show that 1,3-butadiene shares some common reaction chemistry pathways with 1- and 2-butene via Ḣ atom and HȮ2 radical addition to the C = C double bond in 1,3-butadiene, reactions which are important for both systems. The low temperature chemistry of 1,3-butadiene is mainly controlled by the reaction pathways of ȮH radical addition to the C = C double bond of the fuel molecule. The 1-buten-4-ol-3-yl radicals so formed subsequently add to O2 and react via the Waddington mechanism, which is important in accurately simulating the oxidation and auto-ignition of 1,3-butadiene at engine relevant conditions.  相似文献   
65.
66.
Chemiluminescence (CL) is a luminescence phenomenon originated by a “chemical reaction.” CL provides a basis for real-time imaging technology in materials science. In fact, a CL reaction is easily triggered in general and makes it possible to track its progress in a target material by highly sensitive photon detection. Recently, real-time CL imagings became breakthrough techniques for analyzing the molecular mechanisms of failures of polymeric materials and of reactions and phase transitions in soft crystals. In the CL imaging techniques, adamantylideneadamantane 1,2-dioxetane (Adox) has been adopted as a stable core structure of chemiluminophores. That is, Adox is an essential seed compound to design a chemiluminophore with a desired molecular function. To support developments of real-time CL imaging techniques, we review the chemistry of Adox as a representative stable chemiluminophore including scientific history and utilities of Adox and its derivatives.  相似文献   
67.
Cinnamomum camphora leaf essential oil (CEO) was extracted using enzymatic-ultrasound pretreatment followed by microwave assisted extraction (EUP-MAE) method and simultaneously studied as a mycelial growth inhibitor against five important pathogens which cause potato dry rot. The optimum EUP-MAE conditions with a real CEO yield of 19.23 ± 0.12 mg/g were obtained through Plackett–Burman design and Box–Behnken design as follows: 3 % of enzyme dosage, 2 h of pretreatment time, 5 of pH, 210 W of ultrasound power, 50 °C pretreatment temperature, 16 mL/g of water to solid ratio, 30 min of microwave time and 500 W of microwave power. Compared to the reference methods, EUP-MAE possessed a highest CEO yield than these of ultrasound-microwave assisted extraction (U-MAE) and traditional hydrodistillation (HD). Gas chromatography-mass spectrometry (GC–MS) analysis demonstrated that eucalyptol, camphor, and α-terpineol were the three main constituents of CEO. Results from in vitro antifungal activity assay revealed that the mycelial growths of all the five tested Fusarium solani, Fusarium culmorum, Fusarium trichothecioides, Fusarium sporotrioides, and Fusarium avenaceum were apparently affected by CEO. These findings not only provide a potential paradigm for the separation of plant essential oil, but also guarantee a promising utilization of the CEO for potato protection to control the Fusarium spp.  相似文献   
68.
The photoactivity of CdS nanorods was greatly improved by amino functionalized accordion-like MXene and spherical ZnSnO3. MXene possesses good electron transfer capability and ZnSnO3 presents matched energy band with CdS, which deeply accelerate the electron transfer and prevent the recombination of photogenerated electron-hole pair, leading to a strong photoelectrochemical (PEC) response. Taking the merit of the improved photoactivity of CdS nanorods, a novel PEC biosensor was constructed for DNA hydromethylation detection based on immune recognition of target molecule, where 5-hydroxymethyl-2′-deoxycytidine triphosphate (5hmdCTP) was employed as detect target, CdS/MXene was used as photoactive material, and ZnSnO3 was adopted as signal amplification unit. Under enzymatic covalent reaction of –CH2OH of 5hmdCTP with –NH2 of MXene, 5hmdCTP was specifically recognized and captured. Then, taking advantages of the covalent reaction between phosphate group of 5hmdCTP and ZnSnO3, the signal amplification unit was captured. Under the optimum conditions, this PEC biosensor presents wide linear range of 0.008–100 nM and low detection limit of 4.21 pM (3σ). The applicability of the developed method was evaluated by investigating the effect of Cd2+ and perfluorohexane compound pollutant on 5-hydroxymethylcytosine content in the genomic DNA of the roots and leaves of wheat seedlings.  相似文献   
69.
A Ru(II)-catalyzed para-difluoroalkylation of aromatic aldehydes and ketones with a transient directing group has been developed. It utilizes less expensive ruthenium catalysts and allows facile access to challenging difluoroalkylated aldehydes. The mechanism studies suggest that the distinct coordination mode of ruthenium complex with imine moieties is responsible for para-selectivity.  相似文献   
70.
《中国化学快报》2021,32(9):2792-2796
A self-synthesized bi-pyridine chelating resin (PAPY) could separate Cu(II)/Ni(II)/Fe(II) sequentially from strong-acidic pickling wastewater by a two-stage pH-adjusted process, in which Cu(II), Ni(II), and Fe(II) were successively preferred by PAPY. In the first stage (pH 1.0), the separation factor of Cu(II) over Ni(II) reached 61.43 in Cu(II)-Ni(II)-Fe(II) systems. In the second stage (pH 2.0), the separation factor of Ni(II) over Fe(II) reached 92.82 in Ni(II)-Fe(II) systems. Emphasis was placed on the selective separation of Cu(II) and Ni(II) in the first-stage. The adsorption amounts of Cu(II) onto PAPY were 1.2 mmol/g in the first stage, while those of Ni(II) and Fe(II) were lower than 0.3 mmol/g. Cu(II) adsorption was hardly affected by Ni(II) with the presence of dense Fe(II), but Cu(II) inhibited Ni(II) adsorption strongly. Part of preloaded Ni(II) could be replaced by Cu(II) based on the replacement effect. Compared with the absence of Fe(II), dense Fe(II) could obviously enhance the separation of Cu(II)-Ni(II). More than 95.0% of Cu(II) could be removed in the former 240 BV (BV for bed volume of the adsorbent) in the fixed-bed adsorption column process with the flow rate of 2.5 BV/h. As proved by X-ray photoelectron spectrometry (XPS) and density functional theory (DFT) analyses, Cu(II) exerted a much stronger deprotonation and chelation ability toward PAPY than Ni(II) and Fe(II). Thus, the work shows a great potential in the separation and purification of heavy metal resources from strong-acidic pickling wastewaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号